103 research outputs found

    Experiences with the GENE-AUTO Code Generator in the Aerospace Industry

    Get PDF
    International audienceThis paper gives an overview of the most recent experimentations that Astrium and Airbus conducted with the GENE AUTO code generator during 2009. GENE-AUTO is an open source automatic and qualifiable C code generator taking as input Simulink ® /Stateflow ® and Scilab/Scicos models. It was developed in the context of an ITEA European project that ended in December 2008 (www.geneauto.org). The GENE-AUTO toolset is currently maintained by its developers and evaluated for industrial usage by several end-users. This paper presents the case studies that we used for evaluation purposes, explains the organisation between the users and technology providers with respect to the toolset maintenance and summarizes the experimentation results

    Automated verification of shape and size properties via separation logic.

    Get PDF
    Despite their popularity and importance, pointer-based programs remain a major challenge for program verification. In this paper, we propose an automated verification system that is concise, precise and expressive for ensuring the safety of pointer-based programs. Our approach uses user-definable shape predicates to allow programmers to describe a wide range of data structures with their associated size properties. To support automatic verification, we design a new entailment checking procedure that can handle well-founded inductive predicates using unfold/fold reasoning. We have proven the soundness and termination of our verification system, and have built a prototype system

    Compiler-Enhanced Incremental Checkpointing for OpenMP Applications

    Get PDF
    As modern supercomputing systems reach the peta-flop performance range, they grow in both size and complexity. This makes them increasingly vulnerable to failures from a variety of causes. Checkpointing is a popular technique for tolerating such failures, enabling applications to periodically save their state and restart computation after a failure. Although a variety of automated system-level checkpointing solutions are currently available to HPC users, manual application-level checkpointing remains more popular due to its superior performance. This paper improves performance of automated checkpointing via a compiler analysis for incremental checkpointing. This analysis, which works with both sequential and OpenMP applications, reduces checkpoint sizes by as much as 80% and enables asynchronous checkpointing

    SPaCIFY: a Formal Model-Driven Engineering for Spacecraft On-Board Software

    Get PDF
    International audienceThe aim of this article is to present a model- driven approach proposed by the SPaCIFY project for spacecraft on-board software development. This ap- proach is based on a formal globally asynchronous lo- cally synchronous language called Synoptic, and on a set of transformations allowing code generation and model verification
    corecore